skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Largier, John L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Understanding and monitoring nearshore environments is essential, given that these fine-scaled ecosystems are integral to human well-being. While satellites offer an opportunity to gain synchronous and spatially extensive data of coastal areas, off-the-shelf calibrated satellite sea surface temperature (SST) measurements have only been available at coarse resolutions of 1 km or larger. In this study, we develop a novel methodology to create a simple linear equation to calibrate fine-scale Landsat thermal infrared radiation brightness temperatures (calibrated for land sensing) to derive SST at a resolution of 100 m. The constants of this equation are derived from correlations of coincident MODIS SST and Landsat data, which we filter to find optimal pairs. Validation against in situ sensor data at varying distances from the shore in Northern California shows that our SST estimates are more accurate than prior off-the-shelf Landsat data calibrated for land surfaces. These fine-scale SST estimates also demonstrate superior accuracy compared with coincident MODIS SST estimates. The root mean square error for our minimally filtered dataset (n = 557 images) ranges from 0.76 to 1.20 °C with correlation coefficients from r = 0.73 to 0.92, and for our optimal dataset (n = 229 images), the error is from 0.62 to 0.98 °C with correlations from r = 0.83 to 0.92. Potential error sources related to stratification and seasonality are examined and we conclude that Landsat data represent skin temperatures with an error between 0.62 and 0.73 °C. We discuss the utility of our methodology for enhancing coastal monitoring efforts and capturing previously unseen spatial complexity. Testing the calibration methodology on Landsat images before and after the temporal bounds of accurate MODIS SST measurements shows successful calibration with lower errors than the off-the-shelf, land-calibrated Landsat product, extending the applicability of our approach. This new approach for obtaining high-resolution SST data in nearshore waters may be applied to other upwelling regions globally, contributing to improved coastal monitoring, management, and research. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Free, publicly-accessible full text available December 1, 2025
  3. Abstract The allometric trophic network (ATN) framework for modeling population dynamics has provided numerous insights into ecosystem functioning in recent years. Herein we extend ATN modeling of the intertidal ecosystem off central Chile to include empirical data on pelagic chlorophyll-a concentration. This intertidal community requires subsidy of primary productivity to support its rich ecosystem. Previous work models this subsidy using a constant rate of phytoplankton input to the system. However, data shows pelagic subsidies exhibit highly variable, pulse-like behavior. The primary contribution of our work is incorporating this variable input into ATN modeling to simulate how this ecosystem may respond to pulses of pelagic phytoplankton. Our model results show that: (1) closely related sea snails respond differently to phytoplankton variability, which is explained by the underlying network structure of the food web; (2) increasing the rate of pelagic-intertidal mixing increases fluctuations in species’ biomasses that may increase the risk of local extirpation; (3) predators are the most sensitive species to phytoplankton biomass fluctuations, putting these species at greater risk of extirpation than others. Finally, our work provides a straightforward way to incorporate empirical, time-series data into the ATN framework that will expand this powerful methodology to new applications. 
    more » « less
  4. Mass mortality events provide valuable insight into biological extremes and also ecological interactions more generally. The sea star wasting epidemic that began in 2013 catalyzed study of the microbiome, genetics, population dynamics, and community ecology of several high-profile species inhabiting the northeastern Pacific but exposed a dearth of information on the diversity, distributions, and impacts of sea star wasting for many lesser-known sea stars and a need for integration across scales. Here, we combine datasets from single-site to coast-wide studies, across time lines from weeks to decades, for65 species. We evaluated the impacts of abiotic characteristics hypothetically associated with sea star wasting (sea surface temperature, pelagic primary productivity, upwelling wind forcing, wave exposure, freshwater runoff) and species characteristics (depth distribution, developmental mode, diet, habitat, reproductive period). We find that the 2010s sea star wasting out-break clearly affected a little over a dozen species, primarily intertidal and shallow subtidal taxa, causing instantaneous wast-ing prevalence rates of 5%–80%. Despite the collapse of some populations within weeks, environmental and species variation protracted the outbreak, which lasted 2–3 years from onset until declining to chronic background rates of 2% sea star wasting prevalence. Recruitment began immediately in many species, and in general, sea star assemblages trended toward recovery; however, recovery was heterogeneous, and a marine heatwave in 2019 raised concerns of a second decline. The abiotic stressors most associated with the 2010s sea star wasting outbreak were elevated sea surface temperature and low wave exposure, as well as freshwater discharge in the north. However, detailed data speaking directly to the biological, ecological, and environmental cause(s) and consequences of the sea star wasting outbreak remain limited in scope, unavoidably retrospective, andperhaps always indeterminate. Redressing this shortfall for the future will require a broad spectrum of monitoring studies not less than the taxonomically broad cross-scale framework we have modeled in this synthesis. 
    more » « less
  5. Abstract Many benthic animals begin life with a planktonic larval stage during which coastal currents may move individuals far from shore. This trait is believed to allow individuals to develop away from nearshore predators and sibling competition, based on the assumption that mortality rates are weaker offshore. However, larvae developing offshore often fail to locate suitable coastal habitats. This results in a trade-off between nearshore mortality and offshore wastage with consequences for larval delivery to adult habitats that have not been fully appreciated. We use a reaction-diffusion model to show that when the nearshore larval mortality rate is high, larval supply can vary more than 10-fold with the offshore mortality rate. If this offshore rate is weak, then larval supply is maximized by an intermediate diffusion rate or larval duration. While a low-diffusivity coastal boundary layer typically improves the larval supply by decreasing wastage, it can also reduce the larval supply by preventing individuals from exploiting low offshore mortality rates. Finally, the cross-shore structure of the mortality rate may influence the alongshore transport of larvae by determining how far offshore they reside prior to settling, and, consequently, the alongshore currents they experience. Our observations contrast with the prior argument that larval supply decreases with diffusivity and larval duration due to wastage, and challenge the widespread decision to omit cross-shore heterogeneity from studies of alongshore movement. Scenarios in which spatial variability in the mortality rate has a large effect on recruitment are important both for understanding the biological consequences of the larval stage and from a modeling perspective. 
    more » « less
  6. Abstract Transitions in phytoplankton community composition are typically attributed to ecological succession even in physically dynamic upwelling systems like the California Current Ecosystem (CCE). An expected succession from a high‐chlorophyll (~ 10μg L−1) diatom‐dominated assemblage to a low‐chlorophyll (< 1.0μg L−1) non‐diatom dominated assemblage was observed during a 2013 summer upwelling event in the CCE. Using an interdisciplinary field‐based space‐for‐time approach leveraging both biogeochemical rate measurements and metatranscriptomics, we suggest that this successional pattern was driven primarily by physical processes. An annually recurring mesoscale eddy‐like feature transported significant quantities of high‐phytoplankton‐biomass coastal water offshore. Chlorophyll was diluted during transport, but diatom contributions to phytoplankton biomass and activity (49–62% observed) did not decline to the extent predicted by dilution (18–24% predicted). Under the space‐for‐time assumption, these trends infer diatom biomass and activity and were stimulated during transport. This is hypothesized to result from decreased contact rates with mortality agents (e.g., viruses) and release from nutrient limitation (confirmed by rate data nearshore), as predicted by the Disturbance‐Recovery hypothesis of phytoplankton bloom formation. Thus, the end point taxonomic composition and activity of the phytoplankton assemblage being transported by the eddy‐like feature were driven by physical processes (mixing) affecting physiological (release from nutrient limitation, increased growth) and ecological (reduced mortality) factors that favored the persistence of the nearshore diatoms during transit. The observed connection between high‐diatom‐biomass coastal waters and non‐diatom‐dominated offshore waters supports the proposed mechanisms for this recurring eddy‐like feature moving seed populations of coastal phytoplankton offshore and thereby sustaining their activity. 
    more » « less